- Fit(): Method calculates the parameters μ and σ and saves them as internal objects.
解释:简单来说,就是求得训练集X的均值啊,方差啊,最大值啊,最小值啊这些训练集X固有的属性。可以理解为一个训练过程
- Transform(): Method using these calculated parameters apply the transformation to a particular dataset.
解释:在Fit的基础上,进行标准化,降维,归一化等操作(看具体用的是哪个工具,如PCA,StandardScaler等)。
- Fit_transform(): joins the fit() and transform() method for transformation of dataset.
解释:fit_transform是fit和transform的组合,既包括了训练又包含了转换。
transform()和fit_transform()二者的功能都是对数据进行某种统一处理(比如标准化~N(0,1),将数据缩放(映射)到某个固定区间,归一化,正则化等)
fit_transform(trainData)对部分数据先拟合fit,找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的),然后对该trainData进行转换transform,从而实现数据的标准化、归一化等等。
根据对之前部分trainData进行fit的整体指标,对剩余的数据(testData)使用同样的均值、方差、最大最小值等指标进行转换transform(testData),从而保证train、test处理方式相同。所以,一般都是这么用:
1 | from sklearn.preprocessing import StandardScaler |
Note:
- 必须先用fit_transform(trainData),之后再transform(testData)
- 如果直接transform(testData),程序会报错
- 如果fit_transfrom(trainData)后,使用fit_transform(testData)而不transform(testData),虽然也能归一化,但是两个结果不是在同一个“标准”下的,具有明显差异。(一定要避免这种情况)
Author: Amanda-Zhang
Copyright: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.